

A Cooperative-Competitive Multi-Agent Framework for Auto-bidding in Online Advertising

Chao Wen, Miao Xu, Zhilin Zhang, Zhenzhe Zheng, Yuhui Wang, and etc.

Nanjing University of Aeronautics and Astronautics, Shanghai Jiao Tong University, Alibaba Group chaowen@nuaa.edu.cn

1. Introduction

Background:

- In traditional bid optimization, advertisers need to manually adjust a bid in each ad auction to optimize the overall ad campaign performance.
- To reduce the burden on bid optimization for advertisers, online platforms have deployed various types of autobidding services, allowing advertisers to simply express

To model the mixed cooperative-competitive relation, we propose temperature-regularized credit assignment (TRCA).

Main ideas:

$$r_i^{\mathsf{TRCA}} = \alpha_i \times r^{\mathsf{tot}},\tag{2}$$

where $\alpha_i = \frac{\exp\{b_i/\tau\}}{\sum_{j=1}^n \exp\{b_j/\tau\}}$ is a softmax-style weighting parameter that satisfies $\alpha_i \in [0, 1]$ and $\sum_{i=1}^n \alpha_i = 1$.

• The main idea is to set a parameter α_i weighting each agent's contribution to the total reward.

Our approach:

- We first group advertisers by their objectives, then the rewards are no longer sparse at the group-level.
- For each group, we train a mean policy π_i that calculates the mean bid based on the mean value and budget, and let each advertiser within the group derive her bid based on her value's *advantage* over the mean value.

6. Experiments

high-level campaign objectives and constraints, and the auto-bidding agents would calculate the bids for each auction on behalf of advertisers.

Figure 1: An Overview of Auto-bidding Services.

Problem Description:

• The goal of auto-bidding agent that bids on behalf of advertiser *i* is to maximize the total value of winning impressions under the budget constraint:

 $\max \sum_{t=1}^{T} v_i^t \times x_i^t$ s.t. $\sum_{t=1}^{T} p^t \times x_i^t \le B_i$

(1)

• We present a multi-agent framework for learning the bidding strategies for auto-bidding agents.

Motivations:

• The ad auction mechanism is inherently a distributed multi-agent system in nature.

• parameter τ enables the co-existence of competition and cooperation, and works as a tool to make a trade-off between these two relations.

4. Improving Revenue with Bar Agents

- Can we further improve the revenue? Yes. We introduce bar agents with different versions to achieve this.
- 1. Fixed bidding bar: similar to the reserve price, but needs to be tuned elaborately.
- 2. Adaptive bidding bar: 1) cannot avoid setting extremely high bidding bar; 2) a unified bidding bar for all may not be a good choice.
- 3. Multiple bar agents: our solution, which is adaptive and personalized.

Figure 3: The architecture of MAAB.

We evaluate our method in an offline industrial dataset and perform an online A/B test on the Alibaba e-commerce advertising platform.

6.1 Main Results

Table 1: Mean and standard deviation of different groups' values (CLICK, CONV, CART), platform's revenue, and social welfare in offline dataset simulation.

Setting 1	CLICK	CONV	CART	Revenue	Social Welfare
MSB	24.7±0	21.8±0	18.0±0	16.9±0	64.5±0
DQN-S	29.3 ±2.7	$35.8{\pm}5.1$	36.0 ±2.3	$68.3{\pm}6.7$	$101.0{\pm}2.5$
CM-IL	$27.8{\pm}0.9$	$41.3{\pm}0.7$	$35.0{\pm}0.8$	86.8 ±1.2	$104.1 {\pm} 0.8$
CO-IL	$27.3{\pm}1.5$	$41.3{\pm}2.0$	35.6 ±1.7	$66.9{\pm}10.2$	104.3±2.3
MAAB	$28.0{\pm}0.8$	41.8 ±1.3	$35.5{\pm}1.4$	80.6±3.2	105.3 ±1.3

Table 2: Mean of different groups' values (CLICK, CONV, CART), platform's revenue and social welfare in the online production environment.

	CLICK	CONV	CART	Revenue	Social Welfare
CM-IL	31.4	48.2	20.4	100.0	100.0
MAAB	32.9	50.3	21.4	96.1	104.6

6.2 Ablation Study

Effectiveness of TRCA

• Appropriate coordination is needed to avoid an anarchy state with significantly degraded system performance.

2. Cooperative or Competitive? Neither!

We devise a two-agent bidding game, and experiment with both competitive method (CM-IL) and cooperative method (CO-IL). We vary the experimental settings with different total budget B_0 in each episode and the budget ratio r, which controls the percentage of the total budget to agent 1.

Multiple Bar Agents:

- One bar agent for each auto-bidding agent. Each bar agent $\bar{\pi}_i$ aims at setting a personalized bar \bar{b}_i for the corresponding auto-bidding agent π_i .
- At each timestep, bar agents and the auto-bidding agents give their bidding bars $\{\overline{b}_i\}_{i=1}^n$ and bids $\{b_i\}_{i=1}^n$, respectively. But only $\{b_i\}_{i=1}^n$ are submitted to the auction. Then the auction environment returns the payment p and the rewards $\{r_i\}_{i=1}^n$. The rewards $\{r_i\}_{i=1}^n$ are re-assigned by TRCA, obtaining $\{r_i^{\text{TRCA}}\}_{i=1}^n$.
- We introduce a **bar gate** to avoid setting extremely high bidding bar:

$$b_i, \bar{b}_i) = \begin{cases} 1 & \text{if } b_i \ge \bar{b}_i, \\ 0 & \text{otherwise} \end{cases}.$$
(3)

With the bar gate, the rewards for optimizing π_i and $\bar{\pi}_i$ are $r_i^{\text{train}} = z_i \times r_i^{\text{TRCA}}$ and $\bar{r}_i^{\text{train}} = z_i \times p$, respectively. The bar gate connects social welfare and revenue by enforcing the bar agent's bidding bar to be a maximum lower bound of auto-bidding agents' bid.

5. Modeling Large-Scale Multi-Agent System

To make our multi-agent approach practical in real system, we propose a mean-agent approach.

(a) Social welfare

(b) Platform's revenue

Figure 5: Social welfare and platform's revenue for methods with different parameter τ . The mean and 95% confidence interval are shown across 3 independent runs.

Influence of Bar Agents

Table 3: Mean and standard deviation of social welfare and
 platform's revenue.

	Social Welfare	Platform's Revenue
MIX-IL	104.0±3.3	99.6±18.2
MAAB-fix ($\overline{b} = 1$)	104.5 ±1.4	114.3 ± 17.1
MAAB-fix ($\overline{b} = 4$)	99.3±0.4	164.9 ±1.3
MAAB	103.9±1.2	134.6±8.2

Figure 2: behaviors of CM-IL and CO-IL.

Results:

- <u>CM-IL</u>: low social welfare but high revenue. This is because the oligarch would bid aggressively to win all impressions.
- <u>CO-IL</u>: high social welfare but low revenue. This is because the cooperative agents can learn collusion behaviors, which encourage the agent to bid low prices.
- We should make a proper trade-off between cooperation and competition.

3. Mixing Cooperation & Competition

Mean Mean Observations Agents	Mean Bids	Clipped Advantages $(A_{i,k} = v_{i,k} / v_i)$	Bids	Auction
$B_1, v_1, ts_1 \longrightarrow \pi_1$	$\rightarrow b_1$ ×	$clip(A_{1,1} A_{1,2} \cdots A_{1,n_1}) = \begin{bmatrix} b \\ b \end{bmatrix}$	$b_{1,1}$ $b_{1,2}$ \cdots b_{1,n_1}	i
$B_2, v_2, ts_2 \longrightarrow \pi_2$	$\rightarrow b_2$ ×	$clip(A_{2,1} A_{2,2} \cdots A_{2,n_2}) = \begin{bmatrix} b \\ b \end{bmatrix}$	$b_{2,1}$ $b_{2,2}$ \cdots b_{2,n_2}	Auction
$B_3, v_3, ts_3 \longrightarrow \pi_3$	$\rightarrow b_3 \times$	$clip(A_{3,1} A_{3,2} \cdots A_{3,n_3}) = \begin{bmatrix} a \\ a \end{bmatrix}$	$b_{3,1}$ $b_{3,2}$ \cdots b_{3,n_3}	
High-Level Interactio	ons ¦	Low-Level I	nteractions	

Figure 4: Modeling with mean agent approach

Challenges:

- There are millions of advertisers in Taobao, making it hard to train with limited computational resources and time.
- The sparsity of the rewards.

Figure 6: Agents' bids for MAAB and the payments for three methods across each timestep of a selected episode.

7. Conclusions

- We propose a multi-agent approach to solve the autobidding problem.
- Proposing TRCA for establishing a mixed cooperation and competition relation among agents.
- Designing bar agents and a reward scheme, called bar gate, for improving the platform's revenue with an adversarial training manner.
- Proposing a mean agent approach for the deployment of our methods on the large-scale advertising platform.